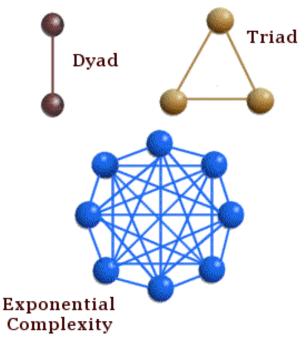
Systems Engineering: At the Crossroads of Complexity


Kongsberg Systems Engineering Event

June 10, 2011

Jon Wade Associate Dean of Research Stevens Institute of Technology

Objectives

Communication: Complexity in numbers

Provide Context

Provoke Thought

"I think that the next century (21st) will be the century of complexity"

- Stephen Hawking

Networking **Software** 100110011010100⁻ 101001101011010⁻ 1110111101010010 1000101100100100 001001000010001 COMPLEXITY

Computation

People

Complexity and Uncertainty

Increasing complexity, cumulative ambiguity, "lack of control"

Enterprise, Organizational, Governance (decentralized)

Network Intensive

Software Intensive

Electronic, isolated islands of So<u>ft</u>ware

Mechanical and Electrical Elements Classical Systems Engineering has this heritage. Much of the SE toolkit in use today has roots in such systems, and is best applicable to such systems

Uncertainty: Change in mission and environment With adaptive Co-opetition

Evolution & Change

Development takes too long. Change takes too long. Replacement takes too long.

The environment is highly uncertain and complex.

System complexity is growing.

Renewed focus on the notion of a "system of systems" with heterogeneous elements, asynchronous clock-speeds, decentralized governance, and emergent characteristics. Electronics: 1-5 Years Mobile Weapons: 5-20+ Years

IEDs & Software: days to months

Infrastructure: 10-25+ Years

Platforms: 20-50+ Years

Rate of Change

The battle of devices has now become a war of ecosystems, where ecosystems include not only the hardware and software of the device, but developers, applications, ecommerce, advertising, search, social applications, location-based services, unified communications and many other things.

Our competitors aren't taking our market share with devices; they are taking our market share with an entire ecosystem. This means we're going to have to decide how we either build, catalyse or join an ecosystem.

- Stephen Elop, CEO Nokia

The Challenges are Accelerating! How to adapt classical systems engineering to address complexity, evolution and change?

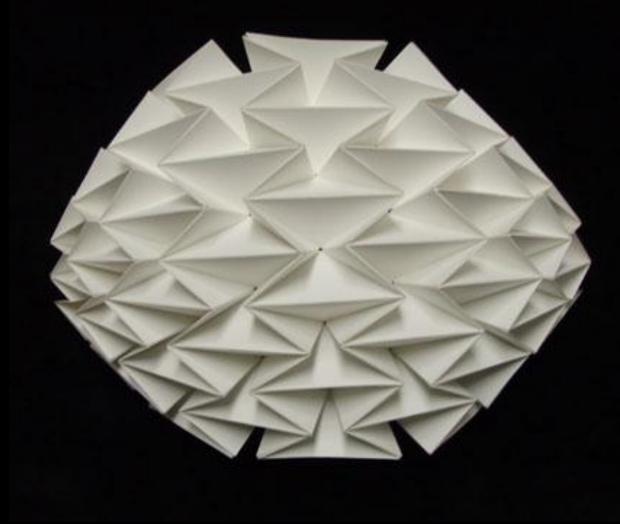
Complicated vs. Complex

Q: How does this system work?

A1: "It's very technical, you might not understand it." (I know some people who might understand it)

A2: "I have some theories on how it might work." (I don't have a clue on how this thing works)

It's more than just numbers...

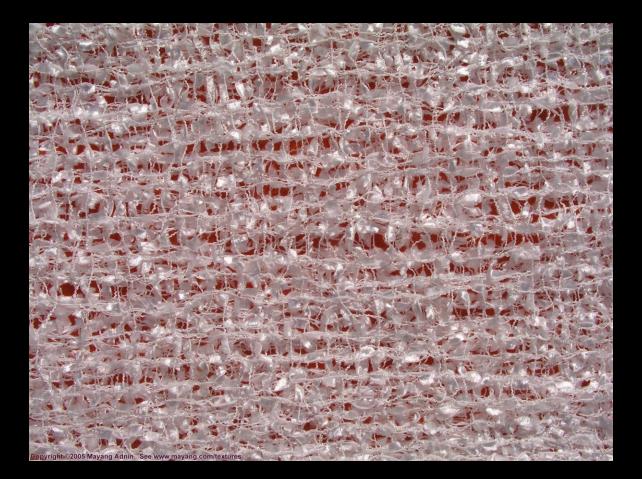

- 25K protein coding genes:
- 45K protein coding genes:
- 7M lines of code:
- 30M lines of code:
- 100M lines of code:
- 2,000M transistors:
- 10²⁷ molecules:

humans rice fighter plane cell phone automobile PC CPU chip gas in room

It's about structure.

Decomposition will not help

Complicated

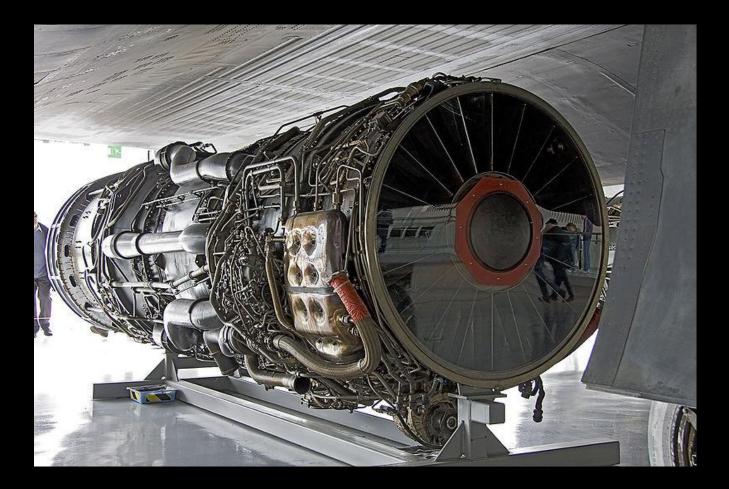


from Latin com: together plicare: to fold

The adj meaning "difficult to unravel" 1656

Source: DeRosa et al, "A Research Agenda for the Engineering of Complex Systems, SysCon 2008.

Complexity



from Latin com: together plectere: to weave, braid, twine

The adj meaning "not easily analyzed" first recorded in 1715

Source: DeRosa et al, "A Research Agenda for the Engineering of Complex Systems, SysCon 2008.

This is complicated!

This is Complex!

Where is SE?

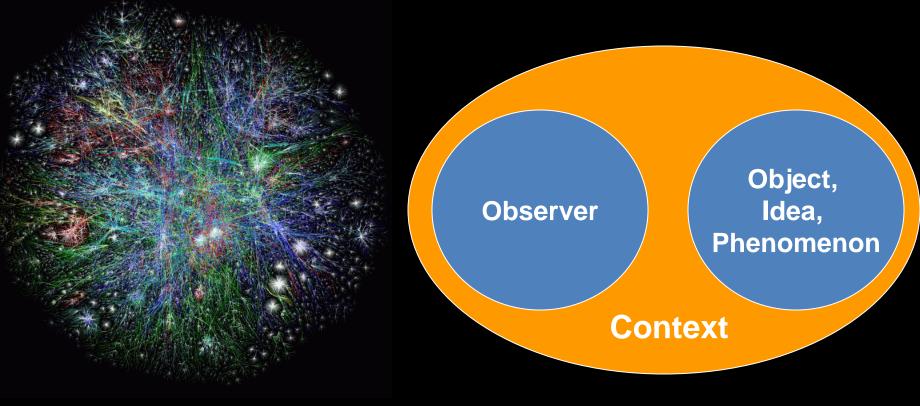
Low

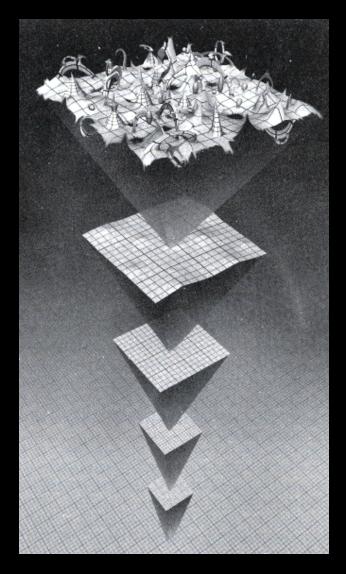
Complication

High

Embracing Complexity

How a systems works deterministically


How a systems behaves stochastically



What is Complexity?

"the degree of difficulty in accurately predicting behavior over time"

Taxonomy of Complexity

Prediction Quality:

- Precision
- Time scale
- Context

Prediction Difficulty:

- Relationships
- Current state
- Computation

Complexity Reduction

- Abstraction
- Transformation
- Reduction
- Homogenization

Abstraction

Applications – Software Engineering

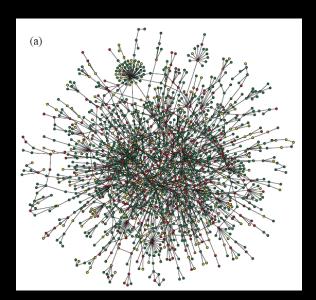
Binary Code – Computer Science

Architecture – Computer Science

Logic – Computer Science

Circuits – Electrical Eng

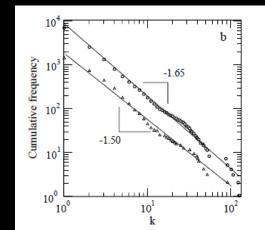
Device Models – Electrical Eng


Device Properties – Device Physics

Material Properties - Material Science

REPRESERVE	Pers.	-		Sim?	
REPERENCE	218	(mark)	11月1日	Silter.	143
ELECTRE PRESS	B. 4	A ROAD	Har La		
PERFERENCE PR		Sec.	He Car		-
CREATER ST.	-	2.2	2.7	And Person in Concession, Name	
PRESERVER.		200	2.5	- HILL	
		10	17 P.	- and the	
C POLICIPUT	P		12.4	-	1. 11
Cularia da da da da da da	1948			ALC: NO	
CONTRACTOR OF	日報	199	Est al.	2011	
SSASA SALASA	11	(#B))		200	
CREAKERS.	小家	180	18.42	- the second	
CARACTERIZED.	-0.0	STATE IN	1.4	Sale P	
2 pp pp pp pp	100	12.80	15.6	1000	# #: 昭
EFFERENCE	10.8	- and the	1993	Sector P	
PROPERTY.		191544	Ser.Y	Contrast of	Kall, Hit

The Power of Abstraction For VLSI - 1980


Transformation

Protein Interactions

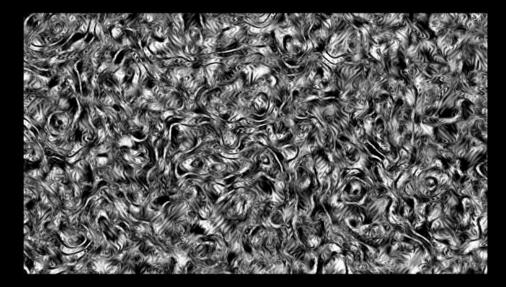
In Yeast

Java Code Network

Internet

Reduction

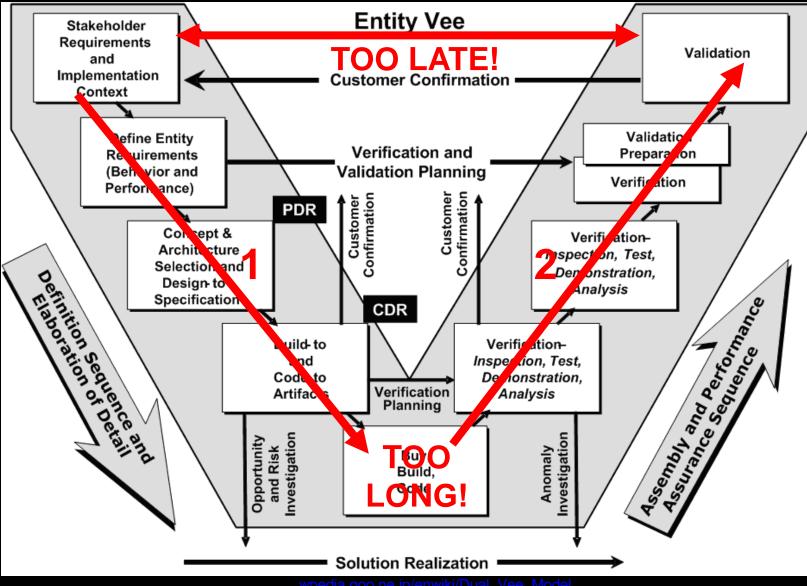
Elements



Context

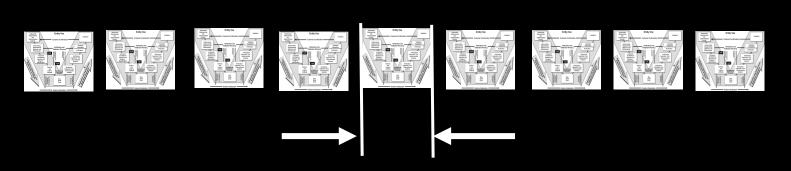
0degC < T < 125degC 2.1V < V < 2.4V 2.0GHz < f < 2.3GHz

Homogenization


Gas Molecules

Q: At what temperature does pure water in isolation @ 1atm become a solid?

A: -42degC, -108degC if cooled sufficiently quickly


As simple as possible, but no simpler!

Traditional SE

The Disappearance of the Vee

Continuous Coherent Development

Leveraging Computation, Visualization, Communication & Information Technologies

Validate and Verify, early and often!

Subtle

Not So Subtle

Thank You!