System Integration at ASML: Linking Technical Content, Test Configurations, Timing... and People!

Niels Braspenning, System Integration Architect at ASML Kongsberg Systems Engineering Event – June 13th, 2013

Public Slide 2

Introduction ASML System Integration at ASML System Integration pillars

- Technical content
- Test configurations
- Timing
- ... and people!

Lithography enables affordable connected electronics, improving quality of life and sustainability

\$1,469 B Electronic Applications in 2012 \$1,423 B in 2011, \$1,343 B in 2010

0 ASINI

\$ 6.5 B Semiconductor Litho market in 2012 \$8.2 B in 2011, \$6.4 B in 2010 **\$297.6 B Semiconductor Chips in 2012** \$306.8 B in 2011, \$301.5 B in 2010

Source: Gartner Q4/12 and ASML

ASML

The economic benefit of shrink At increasing R&D investments

600 10000 \$1,162 for 1 GB Lithography cost per unit of memory \$/GByte 500 1000 **KrF** (M€) 400 ArF R&D spend 100 300 rFi 10 ASML 200 \$0.17 for 1 GB Ar DP 100 IV 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Public Slide 5

ASML

Communication became ~ 10¹³ more energy efficient Enabled by scaling of semiconductors

Public Slide 6

5 MJ/b

20 wood sticks of 2 cm diameter and 50 cm long equals ~3 dm³ Message size 10 characters or 10 ~15 MJ/dm³ energy from burning wood we use 45 MJ/message or 5 MJ/b

1 µJ/b

High Speed Downlink Packet Access, HSDPA speed 3.65 Mb/s using 5.5 W resulting in \sim 1µJ/b (Siemens UR5 router)

Public Slide 7

Where does ASML fit in?

Lithography is at the heart of chip manufacturing

Zoom into a chip: this is nanometer accuracy Structures need to be aligned both horizontally and vertically

ASML

Placement of these chip features is critical!

Equivalent: Print The Netherlands in 15 seconds!

300 mm wafer

The Netherlands

Length of a field/chip Minimum feature size Positional accuracy

~32 mm ~20 nm ~5 nm ASML

Minimum feature size Positional accuracy ~32 mm ~20 nm ~5 nm rresponds to ~32 km <mark>(KB-Dramme</mark> ~2 cm ~5 mm

Photolithography – Main ASML system components

Although the basics are rather straightforward ("copy" pattern on reticle to wafer surface)...

... the (conflicting) performance specs make it complex

ASML: world's largest semiconductor equipment vendor

Slide 13

Over 55 sales and service offices located worldwide

Source: VLSI Research/ASML Q1 2013

ASML headquarters in Veldhoven

ASML

ASML products enable customer shrink roadmaps

ASML

Public Slide 15

LE = Litho-Etch, n = number of iterations SADP = Self Aligned Double Patterning SAQP = Self Aligned Quadruple Patterning

* Note: Process development 1.5 ~ 2 years in advance

>1µm Overlay: 250 nm

1984:

PAS 2000

Resolution:

PAS 5000 Resolution:

<500 nm overlav: 100 nm

1989:

1990's: PAS 5500 steppers/ scanners

Resolution: 400 to 90 nm overlay: 100 to 12 nm

2000's: **TWINSCAN**

Resolution: 100 to 38 nm overlay: 20 to 4 nm

2010's: **NXE EUV** systems

Resolution: 32 to <20 nm overlay: 2 nm

Continuous lithography innovation: the shrink engine The smaller the lines, the bigger the systems...

In 30 years: From 1,200 nm to less than 20 nm resolution

ASML

Worldwide 8,625 employees as of Q1 2013 - R&D: >2,600 payroll + >1,300 contracted

49% of personnel has Master degree - of which approximately 500 PhD's

Integrated knowledge network:

- another ~20,000 jobs at ~600 suppliers

Master

Public Slide 18

Introduction ASML

System Integration at ASML

System Integration pillars

- Technical content
- Test configurations
- Timing
- ... and people!

System Integration at ASML

"The bringing together of subsystems into one system and ensuring that the subsystems function together and perform to specification"

A typical ASML system integration project:

- Integrates ~2000 HW changes and ~1500 SW changes
- Takes ~1.5yr from first module available to first product shipment
- Involves ~20 delivering projects (~600 people)
- Consists of ~400 integration steps on system level
- Requires up to ~80M€ of testing resources
- Starts when not all requirements/designs are finished (next slide)

ASML

Public

Slide 21

Concurrent Engineering & System Integration

Reduction of design uncertainty over time

- Goal: steep slope!
- Start with key specs
- Risk management: focus on largest unknowns
 - What now, what later
 - Enable ordering of long lead items
- One thing is certain: things will change!

Public Slide 25

Introduction ASML System Integration at ASML System Integration pillars

- Technical content
- Test configurations
- Timing
- ... and people!

System Integration pillars – TECHNICAL CONTENT

Public Slide 26

ASML

Integration strategy & content definition starts during design phase, based on:

- Breakdown of functional & performance requirements by Systems Engineering
- Masterplan by program management

Integration "PERT" (logical overview of integration items)

Public Slide 27

System Integration pillars – TECHNICAL CONTENT

Contents are refined via sub-PERTs:

- Assign integration steps to projects and track preparation/execution/closure status
- Guard completeness & pre/post conditions
- Analyze coverage of functional/performance breakdown incl. risk reduction effectivity

	Int step 1	Int step 2	Int step 3	Int step 4	Int step 5	Int step 6	Int step 7	Int step 8	Int step 9	Int step 10				
Function 1									Pha	ased	deliv	ery,		
Function 2									ref	ine bi	reako	down	?	
Function 3														
Function 4														
Function 5						?	?							
Function 6						?	?	?						
									Risk	"gap	os", c	an we	e do	
Perf. Item A									som	ethir	ng ab	out it		
Perf. Item B							?	?						
Perf. Item C							?	?	?					

System Integration pillars – TEST CONFIGURATIONS

Public Slide 28

Define, manage, and upgrade the required configuration baselines:

- In line with integration strategy, with intermediate configs to fill risk "gaps"
- Logical coupling to integration steps to derive correct deliverable need dates
 - E.g. project deliverable X is part of config baseline Y that is needed for integration step Z
 → need date of deliverable X is equal to the planned start date of int step Z (timing, 3rd pillar)
- Track actual machine configurations (plan upgrades to get known baselines)

Define config baselin	e in Config baseline Y	Info	Machine 1 config	Machine 2 config	Machine 3 config	Machine 4 config	
HW/SW ID's and sett	ings						Machine 4 has correct
in the stand sector	tem <u>HW 253213</u> (2)	New machine part	OK	OK	4 Item(s)	OK	execute this int step
H	HW-item <u>HW 238701a</u> , <u>HW 238701b</u> (2)	Interface connection extensions	HW_238701a HW_238701b	HW_238701a HW_238701b	HW_238701a HW_238701b	HW_220701a HW_238701b	
]	HW-item <u>HW 23849</u> (2)	Common support bracket	OK	OK	OK	OK	
]	HW-item <u>HW_21347</u> (1)	Dynamic performance improvement solution	0 Item(s)	OK	0 Item(s)	OK	
S	SW-item <u>SW 19a</u> (>=1312)	Updated SW driver	wk311	OK	OK	OK	
4	SW-item <u>SW 20b</u> (>=1313)	Improved calibration test	wk311	wk312	OK	OK	Other machines require
\$	Setting 1 (TYPE_B)	Setting for new machine part	OK	TYPE_A	ŨK	UK	upgrades to bring them to
4	Setting 2 (>120)	Setting for new calibration	OK	100	OK	OK	the same baseline

System Integration pillars – TIMING

Public Slide 29

ASML

Integration plan combines inputs and manages allocation, timing, need dates:

- Based on integration step content and configuration upgrades (other pillars)
- Bridge between overall plan (weeks) to daily plan per machine (days/hours)
- Link integration plan activities to project deliverable plans (need dates)
- Consistent progress reporting towards masterplan

The challenge of combining three SI pillars...

Get and keep the "SI golden triangle" of content/configurations/timing aligned

- A change in one of the pillars will influence the others (need flexibility to adapt)
- Things will change e.g. based on integration plan execution feedback/issues

Integration content

Public Slide 30

ASML

niels.braspenning@asml.com

System Integration is primarily about integrating people, the actual system will then follow by itself...