

The teamology and dynamics of small product development tiger teams – a Californian perspective

martin @ *kongsberg,* Høgskolen i Buskerud og Vestfold (HBV)

KSEE 2014, 12 June 2014

Yes, but ... YES, AND that did not work ... I LIKE, I WISH teams fail because of human issues, technology you can solve, human conflicts ... well

TrollLABS

NTNU's Living Lab Skunks works and Maker Space for Radical Engineering Concept Creation at IPM/IVT

martin @ NTNU Trondheim 2014 - 2018

martin.steinert@ntnu.no, prof Engineering Design and Innovation Department for Engineering Design and Materials

LASEACUT

two problems for today

1) How should you set up a team?

2) How does internal team dynamic work

Goog

PARC (Palo Alto Research Center Incorporated) formerly Xerox PARC

Adv aced Development Programs (ADP)

Luckily we have comparable academic spaces

Stanford d.school and Center for Design Research

MIT Medialab

Department for Engineering Design and Materials

bldg. 560 (across the street) Center for Design Research STANFORD UNIVERSITY

Data & Observation

Setup 2013/2014 with HBV!

THE EFFECTS OF TEAM MEMBER INTRINSIC DIFFERENCES ON EMERGENT TEAM DYNAMICS AND LONG-TERM INNOVATIVE PERFORMANCE IN ENGINEERING DESIGN TEAMS

Kress G. 2012 "The effects of team member intrinsic differences on emergent team dynamics and long-term innovative performance in engineering design teams"

INDIVIDUAL DIFFERENCES (COMPOSITION)

- Personal level traits/characteristics
- Extrinsic (ethnographic) traits
- Intrinsic (cognitive) traits

EMERGENT TEAM DYNAMICS

- Team-level phenomena
- Conflict, communication, process
- Occur at local and global levels

LONG-TERM INNOVATIVE PERFORMANCE

- Team output
- Team learning

Diversity drives innovation?

- Diversity creates conflict
- Conflict is sometimes productive
- Conflict is most often harmful
- Diversity has mixed and most often negative effects
- Intrinsic functional diversity is desirable in particular

Badke-Schaub, P., Goldschmidt, G. & Meijer, M. "How Does Cognitive Conflict in Design Teams Support the Development of Creative Ideas?" <u>Creativity and Innovation Management</u> Vol. 19 (2010): 119-133.

Jehn, K. "A Qualitative Analysis of Conflict Types and Dimensions in Organizational Groups." <u>Administrative Science Quarterly</u> Vol. 42 (1997): 530-557.

Jehn, K. et al. "Why Differences Make a Difference: A Field Study of Diversity, Conflict and Performance in Workgroups." <u>Administrative Science Quarterly</u> Vol. 44 (1999): 741-763.

Experiment Design

	Team Composition	Team Dynamics		Team Output
•	Ethnographic data Personality type data Cognitive style data	 Closing survey SPAFF emotion coding* Team diagnostic survey* 	ProTea	oject performance am diagnostic survey*

Data Set

Local ME310 teams	<i>n</i> = 234 students	<i>m</i> = 54 teams	(2007-2012)
Global ME310 teams	n = 100 students	<i>m</i> = 15 teams	(2009-2010)
*Local ME310 teams	n = 33 students	<i>m</i> = 5 teams	(2008-2009)

Diversity in the Literature "What differences make a difference?"

Age	In-Group Memberships
Title	Affective Disposition
Race	Cultural Background
Gender	Sexual Orientation
Religion	Work-Related Ties
Ethnicity	Ideological Beliefs
Education	Physical Abilities
Friendship Ties	Community Ties

Mannix, E. & Neale, M. A. "What Differences Make a Difference? The Promise and Reality of Diverse Teams in Organizations." <u>Psychological Science in the Public Interest</u> Vol. 6 (2005): 31-55.

Diversity in the Literature "What differences make a difference?"

lge	In-Group Memberships
itle	Affective Disposition
ace	Cultural Background

Extrinsic characteristics are not reliable

Ethnicity	Ideological Beliefs
Education	Physical Abilities
Friendship Ties	Community Ties

Mannix, E. & Neale, M. A. "What Differences Make a Difference? The Promise and Reality of Diverse Teams in Organizations." <u>Psychological Science in the Public Interest</u> Vol. 6 (2005): 31-55.

Ethnographic Factors (3)

- Age
- Gender
- School

Gender Ratio

Team Size

Location

Project Difficulty

Wilde Type Indicator (4)

- Intuition (ENP)
- Sensing (ESP)
- Thinking (ETJ)
- Feeling (EFJ)

Herrmann Brain Dominance Indicator (4)

- Factual (A)
- Strategic (B)
- Interpersonal (C)
- Innovative (D) ٠

NEO "Big Five" Personality Inventory (5)

- Extraverted
- Open
- Agreeable
- Conscientious
- Neurotic

Kirton Adaption-Innovation Inventory

Data Set: Independent Variables

Ethnographic Factors (3)

Gender Ratio

Team Size

Location

Project Difficulty

7

Wilde Type Indicator (4)

Herrmann Brain Dominance Indicator (4)

NEO "Big Five" Personality Inventory (5)

Kirton Adaption-Innovation Inventory

14

Reduced via Factor Analysis

- Score is adjusted for difficulty by consensus ratings of ambiguity, scope and technical complexity of prompt
- Assessment performed by two impartial graders trained in agreement (>70% pre-revision and >95% post-revision)

CAL

STANFORD UNIVERSITY

Department for Engineering Design and Materials

WOW results are rare, and they are outliers you will need multiple teams and rounds (the failure issue again)

Performance & Extrinsic Diversity

No consistent trend with gender

No consistent trend with age range

Team size (whole teams)

Team size (without top performers)

Result is not consistent at local levels

r = 0.714, p = 0.006, n = 13

r = 0.812, p = 0.002, n = 11

r = 0.033, p = 0.794, n = 66

Extrinsic diversity, gender, age etc. does not matter !!! AND the bigger the team the better (more brains are better but they create more conflict, human issue is central)

Hypothesis 4

RQ4 There are reliable effects of team composition on long-RQ4 term innovative performance, though these effects are heavily moderated by the team dynamic.

- **H4A** Intrinsic diversity (separation) and performance
- **H4B** Intrinsic diversity (variety) and performance

NTNU - Trondheim Norwegian University of Principal Components Identified

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3.528	25.201	25.201	3.528	25.201	25.201	
2	1.865	13.323	38.524	1.865	13.323	38.524	
3	1.570	11.212	49.736	1.570	11.212	49.736	
4	1.329	9.494	59.230	1.329	9.494	59.230	
5	1.215	8.680	67.910	1.215	8.680	67.910	
6	1.114	7.957	75.867	1.114	7.957	75.867	
7	.746	5.332	81.198				
8	.644	4.597	85.795				
9	.542	3.871	89.667				
10	.417	2.977	92.644				
11	.344	2.457	95.101				
12	.292	2.086	97.187				
13	.260	1.859	99.046				
14	.134	.954	100.000				

Extraction Method: Principal Component Analysis.

Engineering Design and Innovation Department for Engineering Design and Materials

Performance & Intrinsic Diversity

Component 2 Analysis

Component Matrix^a

	Component					
	1	2	3	4	5	6
ENP_extraverted_intuitive	.583	.085	.132	.207	387	.166
ESP_extraverted_sensing	215	307	.086	470	.597	.403
ETJ_extraverted_thinking	609	157	.552	.142	.132	202
EFJ_extraverted_feeling	.310	.319	212	.565	.055	.447
KAIT_innovative	.694	059	.475	.034	115	056
NEO extraverted	.216	231	.613	.388	.406	.287
NEO_agreeable	.126	.615	344	.076	.396	.007
NEO_conscientious	415	.456	.041	.120	.266	448
NEO_neurotic	.014	.740	.140	135	.201	.224
NEO_open	.592	.330	.462	.040	.100	276
HBDIA_factual	624	.280	.314	225	326	.402
HBDIB_planning	637	117	020	.519	.110	198
HBDIC_interpersonal	.528	491	371	.189	.298	010
HBDID_innovative	.730	.064	.063	423	.161	263

Extraction Method: Principal Component Analysis.

25.2%

13.3%

11.2%

9.5%

8.7%

8.0%

Engineering Design and Innovation Department for Engineering Design and Materials

Performance & Intrinsic Diversity

Global teams mean EFJ	$r = 0.677, p = 0.011, n = 13^*$			
Global teams, no top performers	<i>r</i> = 0.490, <i>p</i> = 0.126, <i>n</i> = 11			

Global teams, outlier removed

 $r = 0.831, p = 0.001, n = 12^{**}$

Local teams $r = 0.591, p = 0.002, n = 25^{**}$

Local teams, outlier removed

 $r = 0.646, p = 0.001, n = 23^{**}$

Performance & Extraverted Feeling

Performance vs. Team EFJ - Whole Global Teams

Department for Engineering Design and materials

martin.st

Engineer

STANFORD UNIVERSITY

or

lesearch

Conclusions: Performance

- Intrinsic diversity is consistently negatively correlated with team performance
- Extraverted Feeling is consistently positively correlated with team performance
- The compositional precondition has reliable effects on team performance that are both positive and negative

intrinsic diversity creates problems, only some Extraverted Feeling variable has a positive effect.

so more brains are better but they create more conflict, the human issue is central

(some kind/enabler of open communication may be able to help ... my take, do BBQ at the space, have joint beers and watch out if and when communication decreases or even stops, use coaches)

 \overline{O}

1) How should you set up a team?

Big and intellectually divers – AND it comes at a prize so you must make sure dynamics work.

Do multiple teams and stop them if when they break.

Maybe create small self organizing units in a network composition.

martin.steinert@ntnu.no, prof **Engineering Design and Innovation Department for Engineering Design and Materials**

nowlec

ā \bigcirc

2) How does internal team dynamic work

Too little time today, so only snapshot, book me again for the full story

We analyze (video capture and frame by frame coding) facial muscle movement and body language during team interactions, such as pair programming, negotiations and tiger teams, and correlate the results to performance indicators

AFFECTIVE DYNAMICS AND PERFORMANCE IN ENGINEERING DESIGN TEAMS

Ph.D. Oral Defense Mechanical Engineering Malte F. Jung 5/24/2011

INTRA-GROUP CONFLICT AND PERFORMANCE

MEASURING HEDONIC BALANCE

Cumulative pos-neg affect

Hedonic Balance = Slope

14/42

RCISS CODING

(Krokoff, Gottman, & Haas, 1989)

18/42

SUMMARY

CONTRIBUTIONS

A set of methods to study affect in engineering team interactions

Empirical evidence supporting a relationship between group hedonic balance and performance

In a nutshell, any emotional communication must overall be more positive than negative. Mistrust, anxiety, anger etc. kills performance ... now how to deal with it ??? (let me tell you about MIT fatigue and the Stanford Duck syndrome)

In a nutshell, any emotional communication must overall be more positive than negative. Mistrust, anxiety, anger etc. kills performance ... now how to deal with it ???

(let me tell you about MIT fatigue and the Stanford Duck syndrome)

We did not "love" each other but respected each others skills and contributions AND we never forced collaboration long term.

Takk for meg!

Questions? Or ideas for TrollLABs experiments ;)

TrollLABS

NTNU's Living Lab Skunks works and Maker Space for Radical Engineering Concept Creation at IPM/IVT

martin @ NTNU Trondheim 2014 - 2018

